Deep Neural Networks Algorithms for Stochastic Control Problems on Finite Horizon: Convergence Analysis
نویسندگان
چکیده
This paper develops algorithms for high-dimensional stochastic control problems based on deep learning and dynamic programming. Unlike classical approximate programming approaches, we first the optimal policy by means of neural networks in spirit reinforcement learning, then value function Monte Carlo regression. is achieved recursion performance or hybrid iteration, regress now methods from numerical probabilities. We provide a theoretical justification these algorithms. Consistency rate convergence estimates are analyzed expressed terms universal approximation error networks, statistical when estimating network function, leaving aside optimization error. Numerical results various applications presented companion (arxiv.org/abs/1812.05916) illustrate proposed
منابع مشابه
Regression Methods for Stochastic Control Problems and Their Convergence Analysis
In this paper we develop several regression algorithms for solving general stochastic optimal control problems via Monte Carlo. This type of algorithms is particularly useful for problems with a high-dimensional state space and complex dependence structure of the underlying Markov process with respect to some control. The main idea behind the algorithms is to simulate a set of trajectories unde...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Deep Learning Approximation for Stochastic Control Problems
Many real world stochastic control problems suffer from the “curse of dimensionality”. To overcome this difficulty, we develop a deep learning approach that directly solves high-dimensional stochastic control problems based on Monte-Carlo sampling. We approximate the time-dependent controls as feedforward neural networks and stack these networks together through model dynamics. The objective fu...
متن کاملFast algorithms for learning deep neural networks
With the increase in computation power and data availability in recent times, machine learning and statistics have seen an enormous development and widespread application in areas such as computer vision, computational biology and others. A focus of current research are deep neural nets: nested functions consisting of a hierarchy of layers of thousands of weights and nonlinear, hidden units. Th...
متن کاملFinite horizon exploration for path integral control problems
We have recently developed a path integral method for solving a class of non-linear stochastic control problems in the continuous domain [1, 2]. Path integral (PI) control can be applied for timedependent finite-horizon tasks (motor control, coordination between agents) and static tasks (which behave similar to discounted reward reinforcement learning). In this control formalism, the cost-togo ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2021
ISSN: ['0036-1429', '1095-7170']
DOI: https://doi.org/10.1137/20m1316640